New Trials on Test Data Generation: Analysis of Test Data Space and Design of Improved Algorithm
نویسندگان
چکیده
Test (input) data generation is important for the algorithms/software/hardware testing. The previous researches on test data generation motivate us to find some meaningful information of generated test data. In this paper, we differentiate the test (input) data space (i.e., problem instance space) from the output data space (i.e., solution space), by examining the test data generated in terms of optimality (one of the performance measures). We investigate the problem instance space of the 0/1 knapsack problem, by calculating some kind of cost-distance correlation; the correlation was quite different from those in well-known combinatorial optimization problems. Also, we improved a greedy algorithm of the 0/1 knapsack problem by generated test data. The improved algorithm showed superiority to the original one under 10,000 random instances. This paper presents some promising values of the researches on the test data space and the test data generation for improving the tested module.
منابع مشابه
Optimizing Cost Function in Imperialist Competitive Algorithm for Path Coverage Problem in Software Testing
Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major cha...
متن کاملFeature Selection Based on Genetic Algorithm in the Diagnosis of Autism Disorder by fMRI
Background: Autism Spectrum Disorder (ASD) occurs based on the continuous deficit in a person’s verbal skills, visual, auditory, touch, and social behavior. Over the last two decades, one of the most important approaches in studying brain functions in autistic persons is using functional Magnetic Resonance Imaging (fMRI). Objectives: It is common to use all brain regions in functional extracti...
متن کاملA New Method for Forecasting Uniaxial Compressive Strength of Weak Rocks
The uniaxial compressive strength of weak rocks (UCSWR) is among the essential parameters involved for the design of underground excavations, surface and underground mines, foundations in/on rock masses, and oil wells as an input factor of some analytical and empirical methods such as RMR and RMI. The direct standard approaches are difficult, expensive, and time-consuming, especially with highl...
متن کاملOPTIMIZATION OF SKELETAL STRUCTURES USING IMPROVED GENETIC ALGORITHM BASED ON PROPOSED SAMPLING SEARCH SPACE IDEA
In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined...
متن کاملFACTS Devices Allocation Using a Novel Dedicated Improved PSO for Optimal Operation of Power System
Flexible AC Transmission Systems (FACTS) controllers with its ability to directly control the power flow can offer great opportunities in modern power system, allowing better and safer operation of transmission network. In this paper, in order to find type, size and location of FACTS devices in a power system a Dedicated Improved Particle Swarm Optimization (DIPSO) algorithm is developed for de...
متن کامل